Big Data and Data Science: Behind the Buzz Words

Peggy Brinkmann, FCAS, MAAA
Actuary
Milliman, Inc.

April 1, 2014
Contents

- Big data: from hype to value
- Deconstructing data science
- Managing big data
- Analyzing big data
Big data: from hype to value

“Show me the money.”

- Jerry Maguire (1996)
The real issue

- Data that you can’t process and use quickly enough with the technology you have

- Possible reasons for this
 - Volume
 - Velocity
 - Variety (diverse/unstructured formats)

- Not a new problem, but new data sources are increasing the amount of challenging data
Sources of challenging data

- Transactions
- Web log files
- Mobile
- Voice, images, text, video from web and other sources
- Sensors
- Genomic
New data management solutions

- Need to handle larger volumes, unstructured formats, and/or real-time processing have driven new technologies
- Can lower costs, increase processing speeds for data that can’t be handled well with relational databases and/or single servers
Opportunities from big data

- Cost reduction
- Improve models/decisions with
 - new data
 - more data
 - faster cycle times
- New products and services
What about insurance?

- Product design
- Marketing
- Underwriting
- Pricing
- Sales management
- Claims
- IT
Develop a strategy

- What does your business need?
- What data do you have that is underutilized?
- What data are you missing that would be valuable?
Deconstructing data science

Mr. Maguire: “I just want to say one word to you, just one word.”
Ben: “Yes, sir.”
Mr. Maguire: “Are you listening?”
Ben: “Yes, I am.”
Mr. Maguire: “Plastics.”

- *The Graduate* (1967)
Some definitions of data scientist

- A data analyst in California
- A statistician under 35
- A developer of “data products”
- A practitioner of “data jujitsu”
Something new, or re-branding?

C. F. Jeff Wu (1998):
- Data collection
- Modeling and analysis
- Problem solving and decision making

William S. Cleveland (2001):
- Multidisciplinary investigation
- Models and methods
- Computing with data
- Tool evaluation
Some more recent attempts

- The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it

- Combine the skills of **software programmer**, statistician and **storyteller/artist** to extract the nuggets of gold hidden under mountains of data

- Start by **looking at what the data can tell them**, and then picking interesting threads to follow, rather than the traditional scientist’s approach of choosing the problem first and then finding data to shed light on it

- Extract information from **large datasets** and then present something of use to non-data experts
What seems different

- Using large datasets
- Hands-on, heavy data prep of unstructured data
- Coding with general purpose languages (Python, C++, Java)
- Starting with the data, not a question?
- Emphasis on storytelling/visualization
Family Tree

- Statistics
- Machine Learning

Data Prep (RDB) → Data Mining

- Data Mining
- Analytics

Data Prep (NoSQL) → Data Science

- Data Science
- Data Visualization
Managing big data

“You’re gonna need a bigger boat.”

- *Jaws* (1975)
Managing big data

- Distribute data storage, data processing across multiple computers
- Can use cheaper, commodity hardware because data is duplicated on multiple machines – can be recovered when one fails
- Faster run times - use the parallel computing power of the machines where the data is stored, and avoid I/O of extracting data first
Let’s talk about the elephant in the room, Hadoop

- Software framework for storing and processing structured and unstructured data
- Distributes (and replicates) your data across multiple commodity machines (a “cluster”)
- File system (HDFS) keeps track of where the data is
- Programming framework (MapReduce) to process the data
Many Hadoop vendors

- Apache
- Cloudera
- Hortonworks
- IBM
- MapR (although technically a different file system)
- Microsoft
- Pivotal
What is MapReduce?

Source: http://kickstarthadoop.blogspot.com
Other Hadoop tools

- Hive – SQL-like query language
- Pig Latin – scripting language for creating MapReduce programs
- HBase – column-oriented database within Hadoop
- Mahout – Java machine learning library
- Sqoop – moves data between Hadoop and relational databases
<table>
<thead>
<tr>
<th>Family</th>
<th>Category</th>
<th>Examples</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational</td>
<td>Massively Parallel Processing (MPP)</td>
<td>Teradata, Netezza, Greenplum, Vertica, Oracle Exadata</td>
<td>Fast and familiar</td>
<td>Expensive Poor for unstructured data</td>
</tr>
<tr>
<td>“Not Only SQL”</td>
<td>Key-Value</td>
<td>Redis, Riak, Voldemort</td>
<td>Simple, fast I/O</td>
<td>Poor for complex data</td>
</tr>
<tr>
<td>Column</td>
<td>Hbase, Hypertable, Cassandra</td>
<td></td>
<td>Good for unstructured data</td>
<td>Poor for interconnected data</td>
</tr>
<tr>
<td>Document</td>
<td>CouchDB, MongoDB</td>
<td></td>
<td>Good for unstructured data</td>
<td>Poor for interconnected data</td>
</tr>
<tr>
<td>Graph</td>
<td>Neo4j, InfiniteGraph</td>
<td></td>
<td>Certain types of problems</td>
<td>Not really scalable</td>
</tr>
</tbody>
</table>
Analyzing big data

“I feel the need – the need for speed!”

- Top Gun (1986)
First, it isn’t always as big as it seems

- Use big data tools to summarize it down, then apply the usual analysis software
- Do you really need every observation? Then sample it down
Intermediate steps

- Use software/algorithms that process outside of memory (bigGLM, Revolution R)
- Get more memory – a new machine, a big memory instance on a cloud
If you go for it . . .

Need analysis software that has been written to work in parallel

<table>
<thead>
<tr>
<th>Product</th>
<th>Algorithms supported for distributed processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS on Hadoop</td>
<td>C&RT, Time series, GLM, Logistic regression, Random Forest, Clustering</td>
</tr>
<tr>
<td>Revolution R Enterprise</td>
<td>Regression, Logistic regression, GLM, Clustering, Decision Trees, Random Forest</td>
</tr>
<tr>
<td>IBM SPSS Analytic Server</td>
<td>Linear regression, Neural Net, C&RT, CHAID</td>
</tr>
<tr>
<td>Mahout</td>
<td>Collaborative filtering, Naïve Bayes, Random Forest, Clustering, Principal Components</td>
</tr>
<tr>
<td>MapReduce</td>
<td>Write your own MapReduce directly or with an interface like RHadoop</td>
</tr>
</tbody>
</table>
THANK YOU

peggy.brinkmann@milliman.com