A Primer in Multilevel Modeling for Actuarial Applications

Mona Hammad, ASA PhD
Assistant Professor, Math & Insurance dept., Faculty of Commerce, Cairo University, Egypt.
mona_hammad@hotmail.com
Agenda

• Overall aim of the paper
• Motivation
• Overview of key points
• Conclusion
• Next steps
Overall Aim of the Paper

• a simple *introduction*

• suitable for both *academics and practitioners*

• in order to encourage *more to use* this important technique in their future work.
Motivation

Overview of key points

1. **What** is multilevel modeling?
2. **Why** to use multilevel modeling?
3. **When** to use multilevel modeling?
4. **How** to use multilevel modeling?
1- **What** is multilevel modeling?

- **multilevel model** can be defined as:
 - a model “specified in stages, with each stage building upon another” (Searle, Casella, & McCulloch, 2006, p. 315).

 – “a regression (a linear or generalized linear model) in which the parameters—the regression coefficients—are given a probability model.” (Gelman & Hill, 2007, p. 1)
Simple Illustrative Example

- dataset of observations for units i nested groups j. *(examples?!)*

- Hierarchical/clustered/Nested data structures.

 → Reason for alternative name HLM/limitation

 - More layers

 - Panel/longitudinal data
Simple Illustrative Example (Cont.)

Complete Pooling
(one single model)
(-) ignore &
correlation
(-) not suitable for all?

Partial Pooling
(Multilevel Model)
a compromise

No Pooling
(separate models)
Not practical

Gelman & Hill, 2007
|----------------------------------|-------------------------------|---|

Note: each of these graphs assumes a hypothetical dataset with 6 groups (i.e. six level 2 units), with each fitted line representing a different group, in other words. Source: (Gelman & Hill, 2007, p. 238)

\[
y_{ij} = \pi_{0j} + \pi_{1j} \alpha_{ij} + e_{ij}
\]

\[
\pi_{0j} = \beta_{00} + \beta_{01} x_j + r_{0j}
\]

\[
\pi_{1j} = \beta_{10} + \beta_{11} x_j + r_{1j}
\]

Possibility of different explanatory variables at different levels
2- Why to use multilevel modeling?

• allowance for:
 – **heterogeneity** between different subjects in the dataset without the need to fit separate models.
 – possible **correlations over time** between observations related to the same subject and/or group.

It can handle complex data structures
3- **When** to use multilevel modeling?

- Complex data structures such as:
 - *Hierarchical data*
 - *Panel data*
 - *Cross-classified data*
4- **How** to use multilevel modeling?

- Specialized software vs. general purpose statistical packages (with mixed model procedure).

<table>
<thead>
<tr>
<th>Hierarchical Linear Model (HLM)</th>
<th>Linear Mixed Model notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: $y_{ij} = \pi_{0j} + e_{ij}$</td>
<td>$y_{ij} = \underbrace{\beta_{00}}{Fixed} + \underbrace{r{0j}}{Random} + e{ij}$</td>
</tr>
<tr>
<td>Level 2: $\pi_{0j} = \beta_{00} + r_{0j}$</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• Powerful tool

• Open a wide spectrum of potential model designs
 – need for careful planning (i.e. a clear modeling strategy).
Next Steps

• Read the paper?

• Send feedback?

Thank You
References
