A Cautious Note on Natural Hedging of Longevity Risk

Nan Zhu
Illinois State University

Daniel Bauer
Georgia State University
Introduction

Mortality Forecasting Models

Economic Capital for a Stylized Insurer

Natural Hedging of Longevity Risk

Robustness of the Results

Conclusion
Introduction

Mortality Forecasting Models

Economic Capital for a Stylized Insurer

Natural Hedging of Longevity Risk

Robustness of the Results

Conclusion
Introduction

Background & Literature Review

Longevity risk
\[\downarrow \]
Policyholders’ future realized mortality rates
\[\downarrow \]
Life insurers’ liabilities

Approaches to protecting against longevity risk:

- **Stochastic** mortality forecasting models
- Externally \rightarrow Mortality-linked securities
- Internally \rightarrow natural hedging
 - life insurances \leftrightarrow annuities

Literature:

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices \Rightarrow evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize $CVaR$
Introduction

Background & Literature Review

Longevity risk

\[\downarrow \]

Policyholders’ future realized mortality rates

\[\downarrow \]

Life insurers’ liabilities

Approaches to protecting against longevity risk:

- **Stochastic** mortality forecasting models
- Externally \(\rightarrow \) Mortality-linked securities
- Internally \(\rightarrow \) natural hedging
 - life insurances \(\leftrightarrow \) annuities

Literature:

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices \(\Rightarrow \) evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize CVaR
Introduction

Background & Literature Review

Longevity risk

⇓

Policyholders’ future realized mortality rates

⇓

Life insurers’ liabilities

Approaches to protecting against longevity risk:

• **Stochastic** mortality forecasting models
• Externally → Mortality-linked securities
• Internally → natural hedging
 ▶ life insurances ↔ annuities

Literature:

• Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
• Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
• Tsai et al. (2010): Optimal product mix to minimize CVaR
Underlying mortality forecasting models:

- **Existing literature:**
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages simultaneously
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) \Leftrightarrow annuities (retirees)
 - Positive conclusions of natural hedging

- **This paper:**
 - Parametric factor model & non-parametric mortality model
 - Natural way to test natural hedging

Main findings:

- Using factor models helps to create a perfect hedge for mortality risk by utilizing natural hedging
- **BUT:** Different result from non-parametric mortality model
 - Natural hedging might not be as effective as we think
Underlying mortality forecasting models:

- Existing literature:
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages simultaneously
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) \Leftrightarrow annuities (retirees)
 - Positive conclusions of natural hedging

- This paper:
 - Parametric factor model & non-parametric mortality model
 - Natural way to test natural hedging

Main findings:

- Using factor models helps to create a perfect hedge for mortality risk by utilizing natural hedging
- **BUT**: Different result from non-parametric mortality model
- Natural hedging might not be as effective as we think
Underlying mortality forecasting models:

- Existing literature:
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages simultaneously
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) ⇔ annuities (retirees)
 - Positive conclusions of natural hedging

- This paper:
 - Parametric factor model & non-parametric mortality model
 - Natural way to test natural hedging

Main findings:

- Using factor models helps to create a perfect hedge for mortality risk by utilizing natural hedging
- **BUT:** Different result from non-parametric mortality model
 - Natural hedging might not be as effective as we think
1 Introduction

2 Mortality Forecasting Models

3 Economic Capital for a Stylized Insurer

4 Natural Hedging of Longevity Risk

5 Robustness of the Results

6 Conclusion
Non-Parametric Model

Forward survival probabilities:

\[\tau p_X(t) 1\{\gamma_{x-t} > t\} = \mathbb{E}_P^P \left[1\{\gamma_{x-t} > t + \tau\} \middle| \mathcal{F}_t \vee \{\gamma_{x-t} > t\} \right], \quad 0 \leq T \leq t \leq T + \tau \]

Generational survival data \(\tau p_X(t_j) \): \(j = 1, \ldots, N \)

\[F(t_j, t_{j+1}, (\tau, x)) = -\log \left\{ \frac{\tau + 1 p_X(t_{j+1})}{\tau p_X(t_{j+1})} \right\} \frac{\tau + 1 + t_{j+1} - t_j p_X(t_{j+1}) + t_j(t_j)}{\tau + t_{j+1} - t_j p_X(t_{j+1}) + t_j(t_j)} \]

- \(\bar{F}(t_j, t_{j+1}) = (F(t_j, t_{j+1}, (\tau, x)))_{(\tau, x) \in \bar{C}, j = 1, 2, \ldots, N - 1} \)

\(\Rightarrow \) \(\bar{F}(t_j, t_{j+1}) \) are i.i.d. Gaussian distributed (Prop. 2.1, Zhu and Bauer (2013))

\(\Rightarrow \) Simulate \(\bar{F}(t_N, t_{N+1}) \) based on sample mean and covariance matrix from \(F(t_j, t_{j+1}, (\tau, x)), j = 1, \ldots, N - 1 \)

\(\Rightarrow \tau p_X(t_{N+1}) \)
Mortality Forecasting Models

Parametric Factor Model

Forward force of mortality (easier to model/work with than $\tau p_x(t)$):

$$\mu_t(\tau, x) = -\frac{\partial}{\partial \tau} \log \{\tau p_x(t)\}$$

Consider **time-homogenous diffusion-driven** models (cf. Bauer et al. (2012))

$$d\mu_t = (A\mu_t + \alpha) \, dt + \sigma \, dW_t$$

- **Drift condition** (Cairns et al. (2006, ASTIN)): With W_t Brownian motion under \mathbb{P},

 $$\alpha(\tau, x) = \sigma(\tau, x) \times \int_0^\tau \sigma'(s, x) \, ds$$

- **Bauer et al. (2012)**: μ_t allows for a Gaussian finite-dimensional realization (FDR) iff

 $$\sigma(\tau, x) = C(x + \tau) \times \exp\{M\tau\} \times N$$

- **Zhu and Bauer (2013)**:

 $$\sigma(\tau, x) = (k + c \, e^{d(x+\tau)}) \, (a + \tau) \, e^{-b\tau}$$
Economic Capital for a Stylized Insurer

1. Introduction

2. Mortality Forecasting Models

3. Economic Capital for a Stylized Insurer

4. Natural Hedging of Longevity Risk

5. Robustness of the Results

6. Conclusion
Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk
- Available Capital at time zero: \(AC_0 = E \)
- Available Capital at time one: \(AC_1 = \mathbb{E}^Q[Assets|\mathcal{F}_1] - \mathbb{E}^Q[Liabilities|\mathcal{F}_1] \)
- One-year mark-to-market approach for calculating Economic Capital:

\[
EC = \rho \left(\frac{AC_0 - AC_1 \rho(0,1)}{} \right)
\]

- \(\rho \): monetary risk measure \((L^2(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R})\)
 - Solvency Capital Requirement (Solvency II):
 \[
 EC = SCR = \text{VaR}_\alpha(L) = \arg\min_x \{\mathbb{P}(L > x) \leq 1 - \alpha\}
 \]
 - Conditional Tail Expectation (used within SST):
 \[
 EC = CTE_\alpha = \mathbb{E}[L|L \geq \text{VaR}_\alpha(L)]
 \]
Economic Capital for a Stylized Insurer

Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk
- Available Capital at time zero: \(AC_0 = E \)
- Available Capital at time one: \(AC_1 = \mathbb{E}^Q[\text{Assets}|\mathcal{F}_1] - \mathbb{E}^Q[\text{Liabilities}|\mathcal{F}_1] \)
- One-year mark-to-market approach for calculating Economic Capital:

\[
EC = \rho \left(AC_0 - AC_1 \rho(0, 1) \right)
\]

- \(\rho \): monetary risk measure \((L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}) \)
 - Solvency Capital Requirement (Solvency II):
 \[
 EC = SCR = \text{VaR}_\alpha(L) = \arg \min_x \{ \mathbb{P}(L > x) \leq 1 - \alpha \}
 \]
 - Conditional Tail Expectation (used within SST):
 \[
 EC = \text{CTE}_\alpha = \mathbb{E}[L|L \geq \text{VaR}_\alpha(L)]
 \]
Mortality estimation:

- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 $\Rightarrow \tau p_x(t_j)$, $j = 1, \ldots, 46$
- Calibrate and forecast under:
 0. Deterministic mortality (Lee-Carter)
 1. Non-parametric model
 2. Parametric factor model

Financial market estimation:

- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of A_1 and $V_1 \Rightarrow AC_1 \Rightarrow EC$
Mortality estimation:
- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 \(\mapsto \tau p_x(t_j) \), \(j = 1, \ldots, 46 \)
- Calibrate and forecast under:
 0 Deterministic mortality (Lee-Carter)
 1 Non-parametric model
 2 Parametric factor model

Financial market estimation:
- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of \(A_1 \) and \(V_1 \) \(\Rightarrow \) \(AC_1 \) \(\Rightarrow \) \(EC \)
Mortality estimation:
- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 \(\tau p_x(t_j) \), \(j = 1, \ldots, 46 \)
- Calibrate and forecast under:
 0 Deterministic mortality (Lee-Carter)
 1 Non-parametric model
 2 Parametric factor model

Financial market estimation:
- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of \(A_1 \) and \(V_1 \) \(\Rightarrow AC_1 \Rightarrow EC \)
Economic Capital for a Stylized Insurer

Base Case

Duration match with financial portfolio; \(E = \$20,000,000 \)

<table>
<thead>
<tr>
<th>Term Life</th>
<th>(x)</th>
<th>(i)</th>
<th>(n_{x,i}^{\text{term/end/ann}})</th>
<th>(B_{\text{term/end/ann}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
<td>2,500</td>
<td>$100,000</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>2,500</td>
<td>$100,000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>2,500</td>
<td>$100,000</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>2,500</td>
<td>$100,000</td>
<td></td>
</tr>
<tr>
<td>Endowment</td>
<td>40</td>
<td>20</td>
<td>5,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>5,000</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>5,000</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td>Annuities</td>
<td>60</td>
<td>(40)</td>
<td>2,500</td>
<td>$18,000</td>
</tr>
<tr>
<td>70</td>
<td>(30)</td>
<td>2,500</td>
<td>$18,000</td>
<td></td>
</tr>
</tbody>
</table>

Economic capital:

<table>
<thead>
<tr>
<th>95% VaR</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$60,797,835</td>
<td>$61,585,667</td>
<td>$62,802,167</td>
<td></td>
</tr>
</tbody>
</table>
Economic Capital for a Stylized Insurer

Base Case

Duration match with financial portfolio; $E = 20,000,000$

<table>
<thead>
<tr>
<th>x</th>
<th>i</th>
<th>$n_{x,i}^{\text{term/end/ann}}$</th>
<th>$B_{x,i}^{\text{term/end/ann}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td>Endowment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td>Annuities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>(40)</td>
<td>2,500</td>
<td>$18,000$</td>
</tr>
<tr>
<td>70</td>
<td>(30)</td>
<td>2,500</td>
<td>$18,000$</td>
</tr>
</tbody>
</table>

Economic capital:

<table>
<thead>
<tr>
<th>95% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic Mortality</td>
</tr>
<tr>
<td>Factor Model</td>
</tr>
<tr>
<td>Non-parametric Model</td>
</tr>
<tr>
<td>E_95</td>
</tr>
<tr>
<td>$60,797,835$</td>
</tr>
<tr>
<td>$61,585,667$</td>
</tr>
<tr>
<td>$62,802,167$</td>
</tr>
</tbody>
</table>
Optimal static hedge:

- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$3,201,921</td>
<td>$9,871,987</td>
<td>$10,049,401</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-Parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.2%</td>
<td>1.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>2.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>87.3%</td>
<td>88.0%</td>
<td>90.8%</td>
</tr>
<tr>
<td>20-year Bond</td>
<td>10.0%</td>
<td>10.4%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>
Optimal static hedge:

- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$3,201,921</td>
<td>$9,871,987</td>
<td>$10,049,401</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-Parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.2%</td>
<td>1.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>2.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>87.3%</td>
<td>88.0%</td>
<td>90.8%</td>
</tr>
<tr>
<td>20-year Bond</td>
<td>10.0%</td>
<td>10.4%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>
Optimal static hedge:
- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th>Model</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$3,201,921</td>
<td>$9,871,987</td>
<td>$10,049,401</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th>Model</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-Parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.2%</td>
<td>1.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>2.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>87.3%</td>
<td>88.0%</td>
<td>90.8%</td>
</tr>
<tr>
<td>20-year Bond</td>
<td>10.0%</td>
<td>10.4%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>
Natural Hedging of Longevity Risk

1. Introduction
2. Mortality Forecasting Models
3. Economic Capital for a Stylized Insurer
4. Natural Hedging of Longevity Risk
5. Robustness of the Results
6. Conclusion
Optimal static hedge:
- Exposure in annuity/endowment \Rightarrow fixed
- Adjust exposure in term-life insurance n^{term}:
 - Minimize capital with optimizing financial risk
- Three cases: deterministic mortality vs. factor mortality model vs. non-parametric model
Natural Hedging of Longevity Risk

Observations

- Without systematic mortality, EC increases in n_{term}
- With factor mortality model, EC convex of n_{term} ($n_{term}^* = 60,000$)
- BUT With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: ($n_{term} = 60,000$)

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$4,128,345$</td>
<td>$4,165,973$</td>
<td>$13,872,739$</td>
</tr>
</tbody>
</table>

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly
 - ? (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 - \Rightarrow Natural hedging does not work as well as we expect
 - \Rightarrow Factor models too simplified
Natural Hedging of Longevity Risk

Observations

- Without systematic mortality, EC increases in n_{term}
- With factor mortality model, EC convex of n_{term} ($n_{term}^* = 60,000$)
- BUT With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: ($n_{term} = 60,000$)

<table>
<thead>
<tr>
<th>95% VaR</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$4,128,345$</td>
<td>$4,165,973$</td>
<td>$13,872,739$</td>
</tr>
</tbody>
</table>

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly
 - ? (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 - \Rightarrow Natural hedging does not work as well as we expect
 - \Rightarrow Factor models too simplified
Natural Hedging of Longevity Risk

Observations

• Without systematic mortality, EC increases in n^{term}
• With factor mortality model, EC convex of n^{term} ($n^{\text{term}*} = 60,000$)
• **BUT** With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: ($n^{\text{term}} = 60,000$)

<table>
<thead>
<tr>
<th>95% VaR</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,128,345$</td>
<td>$4,165,973$</td>
<td>$13,872,739$</td>
<td></td>
</tr>
</tbody>
</table>

• Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly
 ? (Almost) perfect hedge of mortality risk with natural hedging

• Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 ⇒ Natural hedging does not work as well as we expect
 ▶ Factor models too simplified
Robustness of the Results

1. Introduction
2. Mortality Forecasting Models
3. Economic Capital for a Stylized Insurer
4. Natural Hedging of Longevity Risk
5. Robustness of the Results
6. Conclusion
Robustness of the Results

Alternative Mortality Models

• Repeat the calculations for alternative mortality models
 ▶ Stochastic Lee-Carter model (one-factor model)
 ▶ Non-parametric bootstrapping model from Li and Ng (2010, JRI)

• U-shape EC curve for the Lee-Carter model \rightarrow highly effective natural hedging ($n^{term\star} = 60,000$)

• Mild effect of natural hedging from the Li&Ng model

(a) Lee-Carter model

(b) Li&Ng model
Conclusion
Conclusion

Natural hedging proposed to handle longevity risk

- Positive results from existing literature
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases

- We compare results derived from both parametric factor and non-parametric stochastic mortality model
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- Advantages: simple, easy to use, etc.
- CAVEAT: important features might be stripped
Conclusion

Natural hedging proposed to handle longevity risk

- **Positive results from existing literature**
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases

- **We compare results derived from both parametric factor and non-parametric stochastic mortality model**
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- **Advantages:** simple, easy to use, etc.
- **CAVEAT:** important features might be stripped